Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 3): 159626, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280083

RESUMO

Cadmium (Cd) pollution in environment is toxic to birds. This study aimed to assess antagonistic effect of honokiol (HNK) on Cd-induced quail (Coturnix japonica) liver tissue damage and Cd-induced vacuolation in hepatocytes. We found that HNK alleviated Cd-induced liver pathological damage marked by elevated serum liver biochemical indicators, disordered antioxidant levels and trace elements in quails. HNK reduced Cd-induced liver cell apoptosis as assessed by western blotting and TUNEL staining. The ultrastructure of hepatocytes under transmission electron microscope revealed that Cd induced mitochondrial damage in addition to abnormal enlargement and increased vacuolar structure of cells. Mitochondrial damage and vacuolization were reduced in the HNK + Cd group. Cd induced an increase in the levels of endosomal/lysosomal-related genes, while HNK treatment reversed this effect. Finally, we demonstrated that vacuolation in buffalo rat liver 3A (BRL 3A) cells occurred primarily due to Cd-induced oxidative stress damage that reduces mitochondrial ATP content and indirectly led to dysfunction of ATP-dependent lipid kinase PIKfyve complex. In summary, we are the first to report that Cd induces abnormal enlargement of endosome/lysosomes in quail liver cells and HNK alleviated this phenomenon by reducing mitochondrial damage and increasing intracellular ATP level. This study demonstrated the toxic effect of Cd pollution on birds and how HNK mitigated these effect at the cellular level. Overall, more research on Cd pollution and HNK use in animal husbandry is warranted.


Assuntos
Cádmio , Coturnix , Ratos , Animais , Cádmio/metabolismo , Codorniz , Estresse Oxidativo , Mitocôndrias , Fígado/metabolismo , Lisossomos , Endossomos , Trifosfato de Adenosina/metabolismo
2.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555247

RESUMO

Gap junction protein connexin 43 (Cx43) plays a critical role in gap junction communication in rat hepatocytes. However, those located between hepatocytes are easily internalized following exposure to poisons. Herein, we investigated the potential of buffalo rat liver 3A (BRL 3A) cells to generate annular gap junctions (AGJs) proficient at alleviating cadmium (Cd) cytotoxic injury through degradation via an endosome-lysosome pathway. Our results showed that Cd-induced damage of liver microtubules promoted Cx43 internalization and increased Cx43 phosphorylation at Ser373 site. Furthermore, we established that Cd induced AGJs generation in BRL 3A cells, and AGJs were subsequently degraded through the endosome-lysosome pathway. Overall, our results suggested that Cx43 internalization and the generation of AGJs were cellular protective mechanisms to alleviate Cd toxicity in rat hepatocytes.


Assuntos
Cádmio , Conexina 43 , Ratos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Conexina 43/metabolismo , Hepatócitos/metabolismo , Lisossomos/metabolismo , Endossomos/metabolismo , Junções Comunicantes/metabolismo
3.
Ecotoxicol Environ Saf ; 228: 112993, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808507

RESUMO

Acute exposure to cadmium (Cd) causes vacuolar degeneration in buffalo rat liver 3 A (BRL 3 A) cells. The present study aimed to determine the relationship between Cd-induced microtubule damage and intracellular vacuolar degeneration. Western blotting results showed that Cd damaged the microtubule network and downregulated the expression of microtubule-associated proteins-kinesin-1 heavy chain (KIF5B), γ-tubulin, and acetylated α-tubulin in BRL 3 A cells. Immunofluorescence staining revealed that Cd inhibited interactions between α-tubulin and microtubule-associated protein 4 (MAP4) as well as KIF5B. Increasing Cd concentrations decreased the levels of the lipid kinase, PIKfyve, which regulates the activity of endosome-lysosome fission. Immunofluorescence and transmission electron microscopy revealed vacuole-like organelles that were late endosomes and lysosomes. The PIKfyve inhibitor, YM201636, and the microtubule depolymerizer, nocodazole, aggravated Cd-induced endosome-lysosome enlargement. Knocking down the kif5b gene that encodes KIF5B intensified the enlargement of endosome-lysosomes and expression of early endosome antigen 1 (EEA1), Ras-related protein Rab-7a (RAB7), and lysosome-associated membrane glycoprotein 2 (LAMP2). Nocodazole, YM201636, and the knockdown of kif5b blocked autophagic flux. We concluded that Cd-induced damage to the microtubule network is the main reason for endosome-lysosome enlargement and autophagic flux blockage in BRL 3 A cells, and kinesin-1 plays a critical role in this process.

4.
Front Pharmacol ; 11: 596046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390984

RESUMO

Cadmium is an important environmental pollutant that poses a serious threat to the health of humans and animals. A large number of studies have shown that the liver is one of the important target organs of cadmium. Stimulation of cells can lead to rapid changes in gap junction intercellular communication (GJIC) and autophagy. Previous studies have shown that cadmium can inhibit GJIC and induce autophagy. In order to understand the dynamic changes of GJIC and autophagy in the process of cadmium-induced hepatotoxic injury and the effects of GJIC on autophagy, a time-gradient model of cadmium cytotoxicity was established. The results showed that within 24 h of cadmium exposure, 5 µmol/L cadmium inhibited GJIC by down regulating the expression levels of connexin 43 (Cx43) and disturbing the localization of Cx43 in Buffalo rat liver 3A (BRL 3A) cells. In addition, cadmium induced autophagy and then inhibited autophagic flux in the later stage. During this process, inhibiting of GJIC could exacerbate the cytotoxic damage of cadmium and induce autophagy, but further blocked autophagic flux, promoting GJIC in order to obtain the opposite results.

5.
Toxicol Lett ; 321: 32-43, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862506

RESUMO

Cadmium (Cd) is an important environmental pollutant. Previous studies have shown that Cd can induce liver cell injury; however, the toxicity mechanisms of Cd have not been fully elucidated. This study aimed to further confirm the hepatotoxic effects of Cd in mouse liver cells by various methods both in vivo and in vitro. In addition, it found that Cd induced autophagy but also caused autophagy blockade, and autophagy blockade intensified Cd-induced injury in liver cells. Subsequently, the study investigated the effects of Cd on lysosomes and found that Cd induced lysosomal acidification, promoted the expression of lysosomal-associated membrane protein 2 and lysosomal hydrolase cathepsin B both in vivo and in vitro, and enhanced the lysosomal degradation capacity. It indicated that Cd triggered lysosomal activation. However, the fusion of autophagosomes with lysosomes was inhibited by Cd both in vivo and in vitro. Next, the expression of Rab7, a key protein that regulates autophagosome-lysosome fusion, was examined. Cd was found to inhibit Rab7 expression both in vivo and in vitro. In conclusion, the results indicated that Cd obstructed the autophagic flux by inhibiting the fusion of autophagosomes with lysosomes, thus exacerbating the Cd-induced hepatotoxicity. Moreover, the molecular mechanism of Cd-induced inhibition of autophagosome-lysosome fusion is probably related to the Cd-induced downregulation of Rab7.


Assuntos
Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Catepsina B/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Concentração de Íons de Hidrogênio , Fígado/metabolismo , Fígado/patologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos Endogâmicos C57BL , Proteólise , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...